The first beacon of SmartCAPWAP

This commit is contained in:
vemax78 2013-12-20 23:14:34 +01:00
parent 29ba25e434
commit bef31786ce
18 changed files with 6543 additions and 130 deletions

View File

@ -34,9 +34,7 @@ INCLUDES = \
-I$(top_srcdir)/build \
-I$(top_srcdir)/src/common \
-I$(top_srcdir)/src/wtp \
-I$(top_srcdir)/src/binding/wifi/drivers \
-I$(top_srcdir)/src/binding/wifi/ap/ \
-I$(top_srcdir)/src/binding/wifi/ap/common
-I$(top_srcdir)/src/binding/ieee80211
include $(top_srcdir)/build/Makefile_common.am
@ -56,7 +54,7 @@ wtp_SOURCES = \
$(top_srcdir)/src/wtp/wtp_dfa_reset.c \
$(top_srcdir)/src/wtp/wtp_dfa_imagedata.c \
$(top_srcdir)/src/wtp/wtp_radio.c \
$(top_srcdir)/src/binding/wifi/drivers/wifi_drivers.c
$(top_srcdir)/src/binding/ieee80211/wifi_drivers.c
wtp_LDADD = \
$(CONFIG_LIBS)
@ -66,7 +64,7 @@ wtp_LDADD += $(SSL_LIBS)
endif
if BUILD_WTP_WIFI_DRIVERS_NL80211
wtp_SOURCES += $(top_srcdir)/src/binding/wifi/drivers/wifi_nl80211.c
wtp_SOURCES += $(top_srcdir)/src/binding/ieee80211/wifi_nl80211.c
wtp_LDADD += $(LIBNL_LIBS)
endif

View File

@ -71,7 +71,11 @@ application: {
certificate = "/etc/capwap/wtp.crt";
privatekey = "/etc/capwap/wtp.key";
privatekeypassword = "";
};
};
};
wlan: {
prefix = "ap";
};
radio = (
@ -97,14 +101,6 @@ application: {
combiner = "omni";
selection = [ "internal" ];
};
dsss = {
clearchannelassessment = 0;
energydetectthreshold = 0;
};
ofdm = {
bandsupported = 0;
tithreshold = 100;
};
multidomaincapability = {
firstchannel = 1;
numberchannels = 11;

View File

@ -0,0 +1,212 @@
#ifndef __CAPWAP_IEEE802_11_HEADER__
#define __CAPWAP_IEEE802_11_HEADER__
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/if_ether.h>
#ifndef STRUCT_PACKED
#define STRUCT_PACKED __attribute__((__packed__))
#endif
/* Global values */
#define IEEE80211_MTU 2304
#define IS_IEEE80211_FREQ_BG(x) (((x >= 2412) && (x <= 2484)) ? 1 : 0)
#define IS_IEEE80211_FREQ_A(x) (((x >= 5035) && (x <= 5825)) ? 1 : 0)
/* Rate into multiple of 500Kbps */
#define IEEE80211_RATE_1M 2
#define IEEE80211_RATE_2M 4
#define IEEE80211_RATE_5_5M 11
#define IEEE80211_RATE_11M 22
#define IEEE80211_RATE_6M 12
#define IEEE80211_RATE_9M 18
#define IEEE80211_RATE_12M 24
#define IEEE80211_RATE_18M 36
#define IEEE80211_RATE_24M 48
#define IEEE80211_RATE_36M 72
#define IEEE80211_RATE_48M 96
#define IEEE80211_RATE_54M 108
#define IEEE80211_RATE_80211N 127
#define IS_IEEE80211_RATE_B(x) (((x == IEEE80211_RATE_1M) || (x == IEEE80211_RATE_2M) || (x == IEEE80211_RATE_5_5M) || (x == IEEE80211_RATE_11M)) ? 1 : 0)
#define IS_IEEE80211_RATE_G(x) (((x == IEEE80211_RATE_6M) || (x == IEEE80211_RATE_9M) || (x == IEEE80211_RATE_12M) || (x == IEEE80211_RATE_18M) || (x == IEEE80211_RATE_24M) || (x == IEEE80211_RATE_36M) || (x == IEEE80211_RATE_48M) || (x == IEEE80211_RATE_54M)) ? 1 : 0)
#define IS_IEEE80211_RATE_A(x) (((x == IEEE80211_RATE_6M) || (x == IEEE80211_RATE_9M) || (x == IEEE80211_RATE_12M) || (x == IEEE80211_RATE_18M) || (x == IEEE80211_RATE_24M) || (x == IEEE80211_RATE_36M) || (x == IEEE80211_RATE_48M) || (x == IEEE80211_RATE_54M)) ? 1 : 0)
#define IS_IEEE80211_RATE_N(x) ((x == IEEE80211_RATE_80211N) ? 1 : 0)
/* Frame control type */
#define IEEE80211_FRAMECONTROL_TYPE_MGMT 0
#define IEEE80211_FRAMECONTROL_TYPE_CTRL 1
#define IEEE80211_FRAMECONTROL_TYPE_DATA 2
/* Frame control Management subtype */
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_ASSOC_REQ 0
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_ASSOC_RESP 1
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_REASSOC_REQ 2
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_REASSOC_RESP 3
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_PROBE_REQ 4
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_PROBE_RESP 5
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_TIMING_ADV 6
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_BEACON 8
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_ATIM 9
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_DISASSOC 10
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_AUTH 11
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_DEAUTH 12
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_ACTION 13
#define IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_ACTION_NOACK 14
/* Frame control Control subtype */
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_CTRLWRAPPER 7
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_BLOCKACK_REQ 8
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_BLOCKACK 9
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_PSPOLL 10
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_RTS 11
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_CTS 12
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_ACK 13
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_CFEND 14
#define IEEE80211_FRAMECONTROL_CTRL_SUBTYPE_CFEND_CFACK 15
/* Frame control Data subtype */
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_DATA 0
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_DATA_CFACK 1
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_DATA_CFPOLL 2
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_DATA_CFACK_CFPOLL 3
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_NULL 4
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_CFACK 5
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_CFPOLL 6
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_CFACK_CFPOLL 7
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_QOSDATA 8
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_QOSDATA_CFACK 9
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_QOSDATA_CFPOLL 10
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_QOSDATA_CFACK_CFPOLL 11
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_QOSNULL 12
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_QOSCFPOLL 14
#define IEEE80211_FRAMECONTROL_DATA_SUBTYPE_QOSCFACK_CFPOLL 15
/* */
#define IEEE80211_FRAME_CONTROL(type, stype) __cpu_to_le16((type << 2) | (stype << 4))
/* 802.11 Packet - IEEE802.11 is a little-endian protocol */
struct ieee80211_header {
__le16 framecontrol;
__le16 durationid;
uint8_t address1[ETH_ALEN];
uint8_t address2[ETH_ALEN];
uint8_t address3[ETH_ALEN];
__le16 sequencecontrol;
} STRUCT_PACKED;
/* */
struct ieee80211_header_mgmt {
__le16 framecontrol;
__le16 durationid;
uint8_t da[ETH_ALEN];
uint8_t sa[ETH_ALEN];
uint8_t bssid[ETH_ALEN];
__le16 sequencecontrol;
uint8_t timestamp[8];
__le16 beaconinterval;
__le16 capability;
} STRUCT_PACKED;
/* 802.11 Generic information element */
struct ieee80211_ie {
uint8_t id;
uint8_t len;
} STRUCT_PACKED;
/* 802.11 SSID information element */
#define IEEE80211_IE_SSID 0
#define IEEE80211_IE_SSID_MAX_LENGTH 32
struct ieee80211_ie_ssid {
uint8_t id;
uint8_t len;
uint8_t ssid[0];
} STRUCT_PACKED;
/* 802.11 Supported Rates information element */
#define IEEE80211_IE_SUPPORTED_RATES 1
#define IEEE80211_IE_SUPPORTED_RATES_MAX_LENGTH 8
struct ieee80211_ie_supported_rates {
uint8_t id;
uint8_t len;
uint8_t rates[0];
} STRUCT_PACKED;
/* 802.11 DSSS information element */
#define IEEE80211_IE_DSSS 3
struct ieee80211_ie_dsss {
uint8_t id;
uint8_t len;
uint8_t channel;
} STRUCT_PACKED;
/* 802.11 Country information element */
#define IEEE80211_IE_COUNTRY 7
struct ieee80211_ie_country_channelgroup {
uint8_t firstchannel;
uint8_t numberchannels;
uint8_t maxtxpower;
} STRUCT_PACKED;
struct ieee80211_ie_country {
uint8_t id;
uint8_t len;
uint8_t country[3];
uint8_t channelgroup[0];
} STRUCT_PACKED;
/* 802.11 ERP information element */
#define IEEE80211_IE_ERP 42
struct ieee80211_ie_erp {
uint8_t id;
uint8_t len;
uint8_t params;
} STRUCT_PACKED;
/* 802.11 Extended Supported Rates information element */
#define IEEE80211_IE_EXTENDED_SUPPORTED_RATES 50
struct ieee80211_ie_extended_supported_rates {
uint8_t id;
uint8_t len;
uint8_t rates[0];
} STRUCT_PACKED;
/* 802.11 EDCA Parameter Set information element */
#define IEEE80211_IE_EDCA_PARAMETER_SET 12
#define IEEE80211_IE_EDCA_PARAMETER_SET_LENGTH 18
#define EDCA_PARAMETER_RECORD_AC_BE_FIELD 0
#define EDCA_PARAMETER_RECORD_AC_BK_FIELD 1
#define EDCA_PARAMETER_RECORD_AC_VI_FIELD 2
#define EDCA_PARAMETER_RECORD_AC_VO_FIELD 3
struct ieee80211_ie_edca_parameter_set {
/* TODO */
} STRUCT_PACKED;
/* 802.11 QoS Capability information element */
#define IEEE80211_IE_QOS_CAPABILITY 46
#define IEEE80211_IE_QOS_CAPABILITY_LENGTH 1
struct ieee80211_ie_qos_capability {
/* TODO */
};
/* 802.11 Power Constraint information element */
#define IEEE80211_IE_POWER_CONSTRAINT 52
#define IEEE80211_IE_POWER_CONSTRAINT_LENGTH 1
struct ieee80211_ie_power_constraint {
/* TODO */
} STRUCT_PACKED;
#endif /* __CAPWAP_IEEE802_11_HEADER__ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,741 @@
#include "capwap.h"
#include "capwap_array.h"
#include "capwap_element.h"
#include "wtp_radio.h"
#include "wifi_drivers.h"
#include "ieee80211.h"
/* Declare enable wifi driver */
#ifdef ENABLE_WIFI_DRIVERS_NL80211
extern struct wifi_driver_ops wifi_driver_nl80211_ops;
#endif
static struct wifi_driver_instance wifi_driver[] = {
#ifdef ENABLE_WIFI_DRIVERS_NL80211
{ &wifi_driver_nl80211_ops },
#endif
{ NULL }
};
/* Radio instance */
static struct capwap_array* g_wifidevice = NULL;
/* */
static void wifi_device_freecapability(struct wifi_capability* capability) {
int i;
ASSERT(capability != NULL);
/* Free memory */
if (capability->bands) {
for (i = 0; i < capability->bands->count; i++) {
struct wifi_band_capability* bandcap = (struct wifi_band_capability*)capwap_array_get_item_pointer(capability->bands, i);
if (bandcap->freq) {
capwap_array_free(bandcap->freq);
}
if (bandcap->rate) {
capwap_array_free(bandcap->rate);
}
}
capwap_array_free(capability->bands);
}
if (capability->ciphers) {
capwap_array_free(capability->ciphers);
}
capwap_free(capability);
}
/* */
int wifi_driver_init(void) {
int i;
for (i = 0; wifi_driver[i].ops != NULL; i++) {
/* Initialize driver */
ASSERT(wifi_driver[i].ops->global_init != NULL);
wifi_driver[i].handle = wifi_driver[i].ops->global_init();
if (!wifi_driver[i].handle) {
return -1;
}
}
/* Device handler */
g_wifidevice = capwap_array_create(sizeof(struct wifi_device), 0, 1);
return 0;
}
/* */
void wifi_driver_free(void) {
unsigned long i;
unsigned long j;
/* Free device */
if (g_wifidevice) {
for (i = 0; i < g_wifidevice->count; i++) {
struct wifi_device* device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, i);
if (device->wlan) {
if (device->instance->ops->wlan_delete != NULL) {
for (j = 0; j < device->wlan->count; j++) {
struct wifi_wlan* wlan = (struct wifi_wlan*)capwap_array_get_item_pointer(device->wlan, j);
if (wlan->handle) {
device->instance->ops->wlan_delete(wlan->handle);
}
}
}
capwap_array_free(device->wlan);
}
if (device->capability) {
wifi_device_freecapability(device->capability);
}
if (device->handle && device->instance->ops->device_deinit) {
device->instance->ops->device_deinit(device->handle);
}
}
capwap_array_free(g_wifidevice);
}
/* Free driver */
for (i = 0; wifi_driver[i].ops != NULL; i++) {
if (wifi_driver[i].ops->global_deinit) {
wifi_driver[i].ops->global_deinit(wifi_driver[i].handle);
}
}
}
/* */
int wifi_device_connect(int radioid, const char* ifname, const char* driver) {
int i;
int length;
int result = -1;
ASSERT(radioid > 0);
ASSERT(ifname != NULL);
ASSERT(driver != NULL);
/* Check */
length = strlen(ifname);
if ((length <= 0) || (length >= IFNAMSIZ)) {
capwap_logging_warning("Wifi device name error: %s", ifname);
return -1;
} else if (g_wifidevice->count >= radioid) {
struct wifi_device* device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, radioid);
if (device->handle) {
capwap_logging_warning("Wifi device RadioID already used: %d", radioid);
return -1;
}
}
/* Search driver */
for (i = 0; wifi_driver[i].ops != NULL; i++) {
if (!strcmp(driver, wifi_driver[i].ops->name)) {
wifi_device_handle devicehandle;
struct device_init_params params = {
.ifname = ifname
};
/* Device init */
ASSERT(wifi_driver[i].ops->device_init);
devicehandle = wifi_driver[i].ops->device_init(wifi_driver[i].handle, &params);
if (devicehandle) {
/* Register new device */
struct wifi_device* device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, radioid);
device->handle = devicehandle;
device->instance = &wifi_driver[i];
device->wlan = capwap_array_create(sizeof(struct wifi_wlan), 0, 1);
result = 0;
}
break;
}
}
return result;
}
/* */
static struct wifi_wlan* wifi_wlan_getdevice(int radioid, int wlanid) {
struct wifi_device* device;
ASSERT(radioid > 0);
ASSERT(wlanid > 0);
if (g_wifidevice->count < radioid) {
return NULL;
}
/* Get radio connection */
device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, radioid);
if (device->wlan->count < wlanid) {
return NULL;
}
/* */
if (device->wlan->count < wlanid) {
return NULL;
}
/* Return wlan connection */
return (struct wifi_wlan*)capwap_array_get_item_pointer(device->wlan, wlanid);
}
/* */
int wifi_wlan_create(int radioid, int wlanid, const char* ifname, uint8_t* bssid) {
int length;
struct wifi_device* device;
struct wifi_wlan* wlan;
wifi_wlan_handle wlanhandle;
struct wlan_init_params params = {
.ifname = ifname,
.type = WLAN_INTERFACE_AP
};
ASSERT(radioid > 0);
ASSERT(wlanid > 0);
ASSERT(ifname != NULL);
//ASSERT(bssid != NULL);
/* Check */
length = strlen(ifname);
if ((length <= 0) || (length >= IFNAMSIZ)) {
capwap_logging_warning("Wifi device name error: %s", ifname);
return -1;
} else if (g_wifidevice->count < radioid) {
capwap_logging_warning("Wifi device RadioID %d is not connected", radioid);
return -1;
}
/* Get radio connection */
device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, radioid);
if (!device->handle) {
capwap_logging_warning("Wifi device RadioID %d is not connected", radioid);
return -1;
} else if (device->wlan->count >= wlanid) {
wlan = (struct wifi_wlan*)capwap_array_get_item_pointer(device->wlan, wlanid);
if (wlan->handle) {
capwap_logging_warning("WLAN interface already used: %d", wlanid);
return -1;
}
} else if (!device->instance->ops->wlan_create) {
capwap_logging_warning("%s library don't support wlan_create", device->instance->ops->name);
return -1;
}
/* Create interface */
wlanhandle = device->instance->ops->wlan_create(device->handle, &params);
if (!wlanhandle) {
capwap_logging_warning("Unable to create virtual interface: %s", ifname);
return -1;
}
/* */
wlan = (struct wifi_wlan*)capwap_array_get_item_pointer(device->wlan, wlanid);
wlan->handle = wlanhandle;
wlan->device = device;
return 0;
}
/* */
static void wifi_wlan_getrates(struct wifi_device* device, struct wtp_radio* radio) {
int i, j, w;
uint32_t mode = 0;
ASSERT(device != NULL);
ASSERT(radio != NULL);
/* Free old supported rates */
device->supportedratescount = 0;
/* Retrieve cached capability */
if (!device->capability) {
if (!wifi_device_getcapability(radio->radioid)) {
return;
}
}
/* Check type of rate mode */
for (i = 0; i < radio->rateset.ratesetcount; i++) {
if (device->currentfreq.band == WIFI_BAND_2GHZ) {
if (IS_IEEE80211_RATE_B(radio->rateset.rateset[i])) {
mode |= CAPWAP_RADIO_TYPE_80211B;
} else if (IS_IEEE80211_RATE_G(radio->rateset.rateset[i])) {
mode |= CAPWAP_RADIO_TYPE_80211G;
} else if (IS_IEEE80211_RATE_N(radio->rateset.rateset[i])) {
mode |= CAPWAP_RADIO_TYPE_80211N;
}
} else if (device->currentfreq.band == WIFI_BAND_5GHZ) {
if (IS_IEEE80211_RATE_A(radio->rateset.rateset[i])) {
mode |= CAPWAP_RADIO_TYPE_80211A;
} else if (IS_IEEE80211_RATE_N(radio->rateset.rateset[i])) {
mode |= CAPWAP_RADIO_TYPE_80211N;
}
}
}
/* Add implicit 802.11b rate with only 802.11g rate */
if ((device->currentfreq.band == WIFI_BAND_2GHZ) && !(mode & CAPWAP_RADIO_TYPE_80211B) && (device->currentfreq.mode & CAPWAP_RADIO_TYPE_80211B)) {
device->supportedrates[device->supportedratescount++] = IEEE80211_RATE_1M;
device->supportedrates[device->supportedratescount++] = IEEE80211_RATE_2M;
device->supportedrates[device->supportedratescount++] = IEEE80211_RATE_5_5M;
device->supportedrates[device->supportedratescount++] = IEEE80211_RATE_11M;
}
/* Filter band */
for (i = 0; i < device->capability->bands->count; i++) {
struct wifi_band_capability* bandcap = (struct wifi_band_capability*)capwap_array_get_item_pointer(device->capability->bands, i);
if (bandcap->band == device->currentfreq.band) {
if (bandcap->rate->count) {
for (j = 0; j < bandcap->rate->count; j++) {
struct wifi_rate_capability* rate = (struct wifi_rate_capability*)capwap_array_get_item_pointer(bandcap->rate, j);
/* Validate rate */
for (w = 0; w < radio->rateset.ratesetcount; w++) {
if (radio->rateset.rateset[w] == rate->bitrate) {
device->supportedrates[device->supportedratescount++] = rate->bitrate;
break;
}
}
}
}
break;
}
}
/* Add implicit 802.11n rate with only 802.11a/g rate */
if (!(mode & CAPWAP_RADIO_TYPE_80211N) && (device->currentfreq.mode & CAPWAP_RADIO_TYPE_80211N)) {
device->supportedrates[device->supportedratescount++] = IEEE80211_RATE_80211N;
}
}
/* */
static int wifi_ie_ssid(char* buffer, const char* ssid, int hidessid) {
struct ieee80211_ie_ssid* iessid = (struct ieee80211_ie_ssid*)buffer;
ASSERT(buffer != NULL);
ASSERT(ssid != NULL);
iessid->id = IEEE80211_IE_SSID;
if (!hidessid) {
iessid->len = strlen(ssid);
if (iessid->len > IEEE80211_IE_SSID_MAX_LENGTH) {
return -1;
}
strncpy((char*)iessid->ssid, ssid, iessid->len);
}
return sizeof(struct ieee80211_ie_ssid) + iessid->len;
}
/* */
static int wifi_ie_supportedrates(char* buffer, struct wifi_device* device) {
int i;
int count;
struct ieee80211_ie_supported_rates* iesupportedrates = (struct ieee80211_ie_supported_rates*)buffer;
ASSERT(buffer != NULL);
/* IE accept max only 8 rate */
count = device->supportedratescount;
if (count > 8) {
count = 8;
}
/* */
iesupportedrates->id = IEEE80211_IE_SUPPORTED_RATES;
iesupportedrates->len = count;
for (i = 0; i < count; i++) {
iesupportedrates->rates[i] = device->supportedrates[i];
}
return sizeof(struct ieee80211_ie_supported_rates) + iesupportedrates->len;
}
/* */
static int wifi_ie_extendedsupportedrates(char* buffer, struct wifi_device* device) {
int i, j;
struct ieee80211_ie_extended_supported_rates* ieextendedsupportedrates = (struct ieee80211_ie_extended_supported_rates*)buffer;
ASSERT(buffer != NULL);
/* IE accept only > 8 rate */
if (device->supportedratescount <= IEEE80211_IE_SUPPORTED_RATES_MAX_LENGTH) {
return 0;
}
/* */
ieextendedsupportedrates->id = IEEE80211_IE_EXTENDED_SUPPORTED_RATES;
ieextendedsupportedrates->len = device->supportedratescount - IEEE80211_IE_SUPPORTED_RATES_MAX_LENGTH;
for (i = IEEE80211_IE_SUPPORTED_RATES_MAX_LENGTH, j = 0; i < device->supportedratescount; i++, j++) {
ieextendedsupportedrates->rates[j] = device->supportedrates[i];
}
return sizeof(struct ieee80211_ie_extended_supported_rates) + ieextendedsupportedrates->len;
}
/* */
static int wifi_ie_dsss(char* buffer, struct wifi_device* device) {
struct ieee80211_ie_dsss* iedsss;
ASSERT(buffer != NULL);
ASSERT(device != NULL);
iedsss = (struct ieee80211_ie_dsss*)buffer;
iedsss->id = IEEE80211_IE_SSID;
iedsss->len = 1;
iedsss->channel = device->currentfreq.channel;
return sizeof(struct ieee80211_ie_dsss);
}
/* */
static int wifi_ie_erp(char* buffer, struct wifi_device* device) {
ASSERT(buffer != NULL);
ASSERT(device != NULL);
return 0;
/* TODO implements params ERP
struct ieee80211_ie_erp* ieerp = (struct ieee80211_ie_erp*)buffer;
if (device->currentfreq.mode != CAPWAP_RADIO_TYPE_80211G) {
return 0;
}
ieerp->id = IEEE80211_IE_ERP;
ieerp->len = 1;
iedsss->params = 0;
return sizeof(struct ieee80211_ie_erp);
*/
}
/* */
int wifi_wlan_setupap(struct capwap_80211_addwlan_element* addwlan, struct capwap_array* ies) {
int result;
struct wifi_wlan* wlan;
struct wtp_radio* radio;
char buffer[IEEE80211_MTU];
struct ieee80211_header_mgmt* header;
struct wlan_setupap_params params;
ASSERT(addwlan != NULL);
/* Get WLAN and Radio information */
wlan = wifi_wlan_getdevice(addwlan->radioid, addwlan->wlanid);
radio = wtp_radio_get_phy(addwlan->radioid);
if (!wlan || !radio || !wlan->handle || !wlan->device) {
return -1;
} else if (!wlan->device->instance->ops->wlan_setupap) {
return -1;
}
/* */
memset(buffer, 0, sizeof(buffer));
header = (struct ieee80211_header_mgmt*)buffer;
/* */
memset(&params, 0, sizeof(struct wlan_setupap_params));
params.headbeacon = buffer;
/* Management header frame */
header->framecontrol = IEEE80211_FRAME_CONTROL(IEEE80211_FRAMECONTROL_TYPE_MGMT, IEEE80211_FRAMECONTROL_MGMT_SUBTYPE_BEACON);
memset(header->da, 0xff, ETH_ALEN);
wlan->device->instance->ops->wlan_getmacaddress(wlan->handle, header->sa);
memcpy(header->bssid, header->sa, ETH_ALEN);
header->beaconinterval = __cpu_to_le16(radio->radioconfig.beaconperiod);
header->capability = __cpu_to_le16(addwlan->capability);
params.headbeaconlength += sizeof(struct ieee80211_header_mgmt);
/* Information Element: SSID */
result = wifi_ie_ssid(&params.headbeacon[params.headbeaconlength], (const char*)addwlan->ssid, (addwlan->suppressssid ? 1 : 0));
if (result < 0) {
return -1;
}
params.headbeaconlength += result;
/* Information Element: Supported Rates */
wifi_wlan_getrates(wlan->device, radio);
result = wifi_ie_supportedrates(&params.headbeacon[params.headbeaconlength], wlan->device);
if (result < 0) {
return -1;
}
params.headbeaconlength += result;
/* Information Element: DSSS */
result = wifi_ie_dsss(&params.headbeacon[params.headbeaconlength], wlan->device);
if (result < 0) {
return -1;
}
params.headbeaconlength += result;
/* Separate Information Elements into two block between IE TIM */
params.tailbeacon = &params.headbeacon[params.headbeaconlength];
/* Information Element: Country */
/* TODO */
/* Information Element: ERP */
result = wifi_ie_erp(&params.tailbeacon[params.tailbeaconlength], wlan->device);
if (result < 0) {
return -1;
}
params.tailbeaconlength += result;
/* Information Element: Extended Supported Rates */
result = wifi_ie_extendedsupportedrates(&params.tailbeacon[params.tailbeaconlength], wlan->device);
if (result < 0) {
return -1;
}
params.tailbeaconlength += result;
/* Set configuration params */
strcpy(params.ssid, (const char*)addwlan->ssid);
params.suppressssid = addwlan->suppressssid;
params.beaconinterval = radio->radioconfig.beaconperiod;
params.dtimperiod = radio->radioconfig.dtimperiod;
params.authenticationtype = addwlan->authmode;
/* Configuration complete */
return wlan->device->instance->ops->wlan_setupap(wlan->handle, &params);
}
/* */
int wifi_wlan_startap(int radioid, int wlanid) {
struct wifi_wlan* wlan;
/* */
wlan = wifi_wlan_getdevice(radioid, wlanid);
if (!wlan->device->instance->ops->wlan_startap) {
return -1;
}
return wlan->device->instance->ops->wlan_startap(wlan->handle);
}
/* */
int wifi_wlan_stopap(int radioid, int wlanid) {
struct wifi_wlan* wlan;
/* */
wlan = wifi_wlan_getdevice(radioid, wlanid);
if (!wlan->device->instance->ops->wlan_stopap) {
return -1;
}
return wlan->device->instance->ops->wlan_stopap(wlan->handle);
}
/* */
int wifi_wlan_getbssid(int radioid, int wlanid, uint8_t* bssid) {
struct wifi_wlan* wlan;
/* */
wlan = wifi_wlan_getdevice(radioid, wlanid);
if (!wlan->device->instance->ops->wlan_getmacaddress) {
return -1;
}
return wlan->device->instance->ops->wlan_getmacaddress(wlan->handle, bssid);
}
/* */
void wifi_wlan_destroy(int radioid, int wlanid) {
struct wifi_wlan* wlan;
ASSERT(radioid > 0);
ASSERT(wlanid > 0);
wlan = wifi_wlan_getdevice(radioid, wlanid);
if (wlan && wlan->handle) {
if (wlan->device->instance->ops->wlan_delete) {
wlan->device->instance->ops->wlan_delete(wlan->handle);
}
memset(wlan, 0, sizeof(struct wifi_wlan));
}
}
/* */
struct wifi_capability* wifi_device_getcapability(int radioid) {
struct wifi_device* device;
ASSERT(radioid > 0);
if (g_wifidevice->count <= radioid) {
return NULL;
}
/* Retrieve cached capability */
device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, radioid);
if (!device->capability && device->handle && device->instance->ops->device_getcapability) {
/* Get capability from device */
device->capability = (struct wifi_capability*)capwap_alloc(sizeof(struct wifi_capability));
memset(device->capability, 0, sizeof(struct wifi_capability));
device->capability->bands = capwap_array_create(sizeof(struct wifi_band_capability), 0, 1);
device->capability->ciphers = capwap_array_create(sizeof(struct wifi_cipher_capability), 0, 1);
/* */
if (device->instance->ops->device_getcapability(device->handle, device->capability)) {
wifi_device_freecapability(device->capability);
device->capability = NULL;
}
}
return device->capability;
}
/* */
int wifi_device_setfrequency(int radioid, uint32_t band, uint32_t mode, uint8_t channel) {
int i, j;
int result = -1;
struct wifi_capability* capability;
uint32_t frequency = 0;
ASSERT(radioid > 0);
if (g_wifidevice->count <= radioid) {
return -1;
}
/* Capability device */
capability = wifi_device_getcapability(radioid);
if (!capability || !(capability->flags & WIFI_CAPABILITY_RADIOTYPE) || !(capability->flags & WIFI_CAPABILITY_BANDS)) {
return -1;
}
/* Search frequency */
for (i = 0; (i < capability->bands->count) && !frequency; i++) {
struct wifi_band_capability* bandcap = (struct wifi_band_capability*)capwap_array_get_item_pointer(capability->bands, i);
if (bandcap->band == band) {
for (j = 0; j < bandcap->freq->count; j++) {
struct wifi_freq_capability* freqcap = (struct wifi_freq_capability*)capwap_array_get_item_pointer(bandcap->freq, j);
if (freqcap->channel == channel) {
frequency = freqcap->frequency;
break;
}
}
}
}
/* Configure frequency */
if (frequency) {
struct wifi_device* device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, radioid);
memset(&device->currentfreq, 0, sizeof(struct wifi_frequency));
device->currentfreq.band = band;
device->currentfreq.mode = mode;
device->currentfreq.channel = channel;
device->currentfreq.frequency = frequency;
/* According to the selected band remove the invalid mode */
if (device->currentfreq.band == WIFI_BAND_2GHZ) {
device->currentfreq.mode &= ~CAPWAP_RADIO_TYPE_80211A;
} else if (device->currentfreq.band == WIFI_BAND_5GHZ) {
device->currentfreq.mode &= ~(CAPWAP_RADIO_TYPE_80211B | CAPWAP_RADIO_TYPE_80211G);
}
/* Set frequency */
device = (struct wifi_device*)capwap_array_get_item_pointer(g_wifidevice, radioid);
if (device->handle && device->instance->ops->device_setfrequency) {
result = device->instance->ops->device_setfrequency(device->handle, &device->currentfreq);
}
}
/* */
return result;
}
/* */
uint32_t wifi_iface_index(const char* ifname) {
if (!ifname || !*ifname) {
return 0;
}
return if_nametoindex(ifname);
}
/* */
int wifi_iface_updown(int sock, const char* ifname, int up) {
struct ifreq ifreq;
ASSERT(sock > 0);
ASSERT(ifname != NULL);
ASSERT(*ifname != 0);
/* Change link state of interface */
memset(&ifreq, 0, sizeof(ifreq));
strcpy(ifreq.ifr_name, ifname);
if (!ioctl(sock, SIOCGIFFLAGS, &ifreq)) {
if (up) {
ifreq.ifr_flags |= IFF_UP;
} else {
ifreq.ifr_flags &= ~IFF_UP;
}
if (!ioctl(sock, SIOCSIFFLAGS, &ifreq)) {
return 0;
}
}
return -1;
}
/* */
int wifi_iface_hwaddr(int sock, const char* ifname, uint8_t* hwaddr) {
struct ifreq ifreq;
ASSERT(sock > 0);
ASSERT(ifname != NULL);
ASSERT(*ifname != 0);
ASSERT(hwaddr != NULL);
/* Get mac address of interface */
memset(&ifreq, 0, sizeof(ifreq));
strcpy(ifreq.ifr_name, ifname);
if (!ioctl(sock, SIOCGIFHWADDR, &ifreq)) {
if (ifreq.ifr_hwaddr.sa_family == ARPHRD_ETHER) {
memcpy(hwaddr, ifreq.ifr_hwaddr.sa_data, ETH_ALEN);
return 0;
}
}
return -1;
}
/* */
unsigned long wifi_frequency_to_channel(unsigned long freq) {
if ((freq >= 2412) && (freq <= 2472)) {
return (freq - 2407) / 5;
} else if (freq == 2484) {
return 14;
} else if ((freq >= 5035) && (freq <= 5825)) {
return freq / 5 - 1000;
}
return 0;
}

View File

@ -0,0 +1,235 @@
#ifndef __WIFI_DRIVERS_HEADER__
#define __WIFI_DRIVERS_HEADER__
#include <net/if_arp.h>
#include <linux/if_ether.h>
/* */
#define WIFI_DRIVER_NAME_SIZE 16
#define WIFI_SSID_MAX_LENGTH 32
/* */
#define WIFI_BAND_UNKNOWN 0
#define WIFI_BAND_2GHZ 1
#define WIFI_BAND_5GHZ 2
/* */
#define WIFI_SUPPORTEDRATE_MAX_COUNT 16
/* */
#define WIFI_CAPABILITY_RADIOSUPPORTED 0x00000001
#define WIFI_CAPABILITY_RADIOTYPE 0x00000002
#define WIFI_CAPABILITY_BANDS 0x00000004
#define WIFI_CAPABILITY_CIPHERS 0x00000008
#define WIFI_CAPABILITY_ANTENNA_MASK 0x00000010
/* */
#define WIFI_CAPABILITY_AP_SUPPORTED 0x00000001
#define WIFI_CAPABILITY_AP_VLAN_SUPPORTED 0x00000002
#define WIFI_CAPABILITY_ADHOC_SUPPORTED 0x00000004
#define WIFI_CAPABILITY_MONITOR_SUPPORTED 0x00000008
#define WIFI_CAPABILITY_WDS_SUPPORTED 0x00000010
#define FREQ_CAPABILITY_DISABLED 0x00000001
#define FREQ_CAPABILITY_PASSIVE_SCAN 0x00000002
#define FREQ_CAPABILITY_NO_IBBS 0x00000004
#define FREQ_CAPABILITY_RADAR 0x00000008
#define FREQ_CAPABILITY_DFS_STATE 0x00000010
#define FREQ_CAPABILITY_DFS_TIME 0x00000020
#define RATE_CAPABILITY_SHORTPREAMBLE 0x00000001
#define CIPHER_CAPABILITY_UNKNOWN 0
#define CIPHER_CAPABILITY_WEP40 1
#define CIPHER_CAPABILITY_WEP104 2
#define CIPHER_CAPABILITY_TKIP 3
#define CIPHER_CAPABILITY_CCMP 4
#define CIPHER_CAPABILITY_CMAC 5
#define CIPHER_CAPABILITY_GCMP 6
#define CIPHER_CAPABILITY_WPI_SMS4 7
#define IEEE80211_DFS_USABLE 0
#define IEEE80211_DFS_UNAVAILABLE 1
#define IEEE80211_DFS_AVAILABLE 2
#define WLAN_INTERFACE_AP 1
/* */
typedef void* wifi_global_handle;
typedef void* wifi_device_handle;
typedef void* wifi_wlan_handle;
/* */
struct device_init_params {
const char* ifname;
};
/* */
struct wlan_init_params {
const char* ifname;
int type;
};
/* */
struct wlan_setupap_params {
char* headbeacon;
int headbeaconlength;
char* tailbeacon;
int tailbeaconlength;
char ssid[WIFI_SSID_MAX_LENGTH + 1];
uint8_t suppressssid;
uint16_t beaconinterval;
uint8_t dtimperiod;
uint8_t authenticationtype;
};
/* Interface capability */
struct wifi_freq_capability {
unsigned long flags;
unsigned long frequency; /* MHz */
unsigned long channel;
unsigned long maxtxpower; /* mBm = 100 * dBm */
unsigned long dfsstate;
unsigned long dfstime; /* ms */
};
/* */
struct wifi_rate_capability {
unsigned long flags;
uint8_t bitrate;
};
/* */
struct wifi_band_capability {
unsigned long band;
unsigned long htcapability;
struct capwap_array* freq;
struct capwap_array* rate;
};
/* */
struct wifi_cipher_capability {
unsigned long cipher;
};
/* */
struct wifi_capability {
wifi_device_handle device;
unsigned long flags;
/* WIFI_CAPABILITY_RADIOSUPPORTED */
unsigned long radiosupported;
/* WIFI_CAPABILITY_RADIOTYPE */
unsigned long radiotype;
/* WIFI_CAPABILITY_ANTENNA_MASK */
unsigned long txantennamask;
unsigned long rxantennamask;
/* WIFI_CAPABILITY_BANDS */
struct capwap_array* bands;
/* WIFI_CAPABILITY_CIPHERS */
struct capwap_array* ciphers;
};
/* Frequency configuration */
struct wifi_frequency {
uint32_t band;
uint32_t mode;
uint8_t channel;
uint32_t frequency;
};
/* */
struct wifi_driver_ops {
const char* name; /* Name of wifi driver */
const char* description; /* Description of wifi driver */
/* Global initialize driver */
wifi_global_handle (*global_init)(void);
void (*global_deinit)(wifi_global_handle handle);
/* Device functions */
wifi_device_handle (*device_init)(wifi_global_handle handle, struct device_init_params* params);
int (*device_getcapability)(wifi_device_handle handle, struct wifi_capability* capability);
int (*device_setfrequency)(wifi_device_handle handle, struct wifi_frequency* freq);
void (*device_deinit)(wifi_device_handle handle);
/* WLAN functions */
wifi_wlan_handle (*wlan_create)(wifi_device_handle handle, struct wlan_init_params* params);
int (*wlan_setupap)(wifi_wlan_handle handle, struct wlan_setupap_params* params);
int (*wlan_startap)(wifi_wlan_handle handle);
int (*wlan_stopap)(wifi_wlan_handle handle);
int (*wlan_getmacaddress)(wifi_wlan_handle handle, uint8_t* address);
void (*wlan_delete)(wifi_wlan_handle handle);
};
/* */
struct wifi_driver_instance {
struct wifi_driver_ops* ops; /* Driver functions */
wifi_global_handle handle; /* Global instance handle */
};
/* */
struct wifi_device {
wifi_device_handle handle; /* Device handle */
struct wifi_driver_instance* instance; /* Driver instance */
struct capwap_array* wlan; /* Virtual AP */
/* Cache capability */
struct wifi_capability* capability;
/* Current frequency */
struct wifi_frequency currentfreq;
/* Supported Rates */
int supportedratescount;
uint8_t supportedrates[WIFI_SUPPORTEDRATE_MAX_COUNT];
};
/* */
struct wifi_wlan {
wifi_wlan_handle handle;
struct wifi_device* device;
};
/* Initialize wifi driver engine */
int wifi_driver_init(void);
void wifi_driver_free(void);
/* */
int wifi_device_connect(int radioid, const char* ifname, const char* driver);
struct wifi_capability* wifi_device_getcapability(int radioid);
int wifi_device_setfrequency(int radioid, uint32_t band, uint32_t mode, uint8_t channel);
/* */
int wifi_wlan_create(int radioid, int wlanid, const char* ifname, uint8_t* bssid);
int wifi_wlan_setupap(struct capwap_80211_addwlan_element* addwlan, struct capwap_array* ies);
int wifi_wlan_startap(int radioid, int wlanid);
int wifi_wlan_stopap(int radioid, int wlanid);
int wifi_wlan_getbssid(int radioid, int wlanid, uint8_t* bssid);
void wifi_wlan_destroy(int radioid, int wlanid);
/* Util functions */
uint32_t wifi_iface_index(const char* ifname);
int wifi_iface_hwaddr(int sock, const char* ifname, uint8_t* hwaddr);
unsigned long wifi_frequency_to_channel(unsigned long freq);
int wifi_iface_updown(int sock, const char* ifname, int up);
#define wifi_iface_up(sock, ifname) wifi_iface_updown(sock, ifname, 1)
#define wifi_iface_down(sock, ifname) wifi_iface_updown(sock, ifname, 0)
#endif /* __WIFI_DRIVERS_HEADER__ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,71 @@
#ifndef __WIFI_NL80211_HEADER__
#define __WIFI_NL80211_HEADER__
/* Compatibility functions */
#if !defined(HAVE_LIBNL20) && !defined(HAVE_LIBNL30)
#define nl_sock nl_handle
#endif
/* */
typedef int (*nl_valid_cb)(struct nl_msg* msg, void* data);
/* Global handle */
struct nl80211_global_handle {
struct nl_sock* nl;
struct nl_cb* nl_cb;
int nl80211_id;
int sock_util;
struct capwap_list* devicelist;
};
/* Device handle */
struct nl80211_device_handle {
struct nl80211_global_handle* globalhandle;
uint32_t phyindex;
char phyname[IFNAMSIZ];
};
/* WLAN handle */
struct nl80211_wlan_handle {
struct nl80211_device_handle* devicehandle;
struct nl_sock* nl;
struct nl_cb* nl_cb;
uint32_t virtindex;
char virtname[IFNAMSIZ];
uint8_t address[ETH_ALEN];
/* Beacon / Probe response */
void* headbeacon;
int headbeaconlength;
void* tailbeacon;
int tailbeaconlength;
char ssid[WIFI_SSID_MAX_LENGTH + 1];
uint32_t suppressssid;
uint32_t beaconinterval;
uint32_t dtimperiod;
uint32_t authenticationtype;
};
/* Physical device info */
struct nl80211_phydevice_item {
uint32_t index;
char name[IFNAMSIZ];
};
/* Virtual device info */
struct nl80211_virtdevice_item {
uint32_t phyindex;
uint32_t virtindex;
char virtname[IFNAMSIZ];
};
#endif /* __WIFI_NL80211_HEADER__ */

View File

@ -137,7 +137,7 @@ char* capwap_duplicate_string(const char* source) {
ASSERT(source != NULL);
clone = capwap_alloc(sizeof(char) * (strlen(source) + 1));
clone = capwap_alloc(strlen(source) + 1);
strcpy(clone, source);
return clone;

View File

@ -124,7 +124,7 @@ void capwap_element_80211_antenna_copy(struct capwap_80211_antenna_element* dst,
ASSERT(src != NULL);
if (dst->selections) {
capwap_array_free(dst->selections);
capwap_array_resize(dst->selections, 0);
} else {
dst->selections = capwap_array_create(sizeof(uint8_t), 0, 1);
}

View File

@ -127,7 +127,7 @@ void capwap_get_packet_digest(struct capwap_packet_rxmng* rxmngpacket, struct ca
MD5Final(&mdContext);
memcpy(&packetdigest[0], &mdContext.digest[0], sizeof(unsigned char) * 16);
memcpy(&packetdigest[0], &mdContext.digest[0], 16);
}
/* Verify duplicate packet */
@ -140,7 +140,7 @@ int capwap_recv_retrasmitted_request(struct capwap_dtls* dtls, struct capwap_pac
/* Check packet digest */
capwap_get_packet_digest(rxmngpacket, connection, recvpacketdigest);
if (!memcmp(&recvpacketdigest[0], &packetdigest[0], sizeof(unsigned char) * 16)) {
if (!memcmp(&recvpacketdigest[0], &packetdigest[0], 16)) {
/* Retransmit response */
if (!capwap_crypt_sendto_fragmentpacket(dtls, connection->socket.socket[connection->socket.type], txfragmentpacket, &connection->localaddr, &connection->remoteaddr)) {
capwap_logging_debug("Warning: error to resend response packet");

View File

@ -19,35 +19,6 @@ struct wtp_t g_wtp;
static char g_configurationfile[260] = WTP_STANDARD_CONFIGURATION_FILE;
/* */
static struct wtp_radio* wtp_create_radio(void) {
struct wtp_radio* radio;
/* Create disabled radio */
radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, g_wtp.radios->count);
radio->radioid = g_wtp.radios->count;
radio->status = WTP_RADIO_DISABLED;
/* Init configuration radio */
radio->antenna.selections = capwap_array_create(sizeof(uint8_t), 0, 1);
return radio;
}
/* */
static void wtp_free_radios(void) {
int i;
for (i = 0; i < g_wtp.radios->count; i++) {
struct wtp_radio* radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, i);
capwap_array_free(radio->antenna.selections);
}
/* */
capwap_array_free(g_wtp.radios);
}
/* Alloc WTP */
static int wtp_init(void) {
/* Init WTP with default value */
@ -55,6 +26,7 @@ static int wtp_init(void) {
/* Standard running mode is standalone */
g_wtp.standalone = 1;
strcpy(g_wtp.wlanprefix, WTP_PREFIX_DEFAULT_NAME);
/* Standard name */
g_wtp.name.name = (uint8_t*)capwap_duplicate_string(WTP_STANDARD_NAME);
@ -108,8 +80,8 @@ static int wtp_init(void) {
g_wtp.acdiscoveryresponse = capwap_array_create(sizeof(struct wtp_discovery_response), 0, 1);
/* Radios */
g_wtp.radios = capwap_array_create(sizeof(struct wtp_radio), 0, 1);
wtp_radio_init();
return 1;
}
@ -158,7 +130,7 @@ static void wtp_destroy(void) {
capwap_free(g_wtp.location.value);
/* Free radios */
wtp_free_radios();
wtp_radio_free();
}
/* Save AC address */
@ -311,52 +283,6 @@ static int wtp_parsing_radio_configuration(config_setting_t* configElement, stru
return 0;
}
/* DSSS */
configSection = config_setting_get_member(configElement, "dsss");
if (configSection) {
radio->directsequencecontrol.radioid = radio->radioid;
radio->directsequencecontrol.currentchannel = 0;
if (config_setting_lookup_int(configSection, "clearchannelassessment", &configInt) == CONFIG_TRUE) {
if ((configInt & CAPWAP_DSCONTROL_CCA_MASK) == configInt) {
radio->directsequencecontrol.currentcca = (uint8_t)configInt;
} else {
return 0;
}
} else {
return 0;
}
if (config_setting_lookup_int(configSection, "energydetectthreshold", &configInt) == CONFIG_TRUE) {
radio->directsequencecontrol.enerydetectthreshold = (uint32_t)configInt;
} else {
return 0;
}
}
/* OFDM */
configSection = config_setting_get_member(configElement, "ofdm");
if (configSection) {
radio->ofdmcontrol.radioid = radio->radioid;
radio->ofdmcontrol.currentchannel = 0;
if (config_setting_lookup_int(configSection, "bandsupported", &configInt) == CONFIG_TRUE) {
if ((configInt & CAPWAP_OFDMCONTROL_BAND_MASK) == configInt) {
radio->ofdmcontrol.bandsupport = (uint8_t)configInt;
} else {
return 0;
}
} else {
return 0;
}
if (config_setting_lookup_int(configSection, "tithreshold", &configInt) == CONFIG_TRUE) {
radio->ofdmcontrol.tithreshold = (uint32_t)configInt;
} else {
return 0;
}
}
/* Multi-Domain Capability */
configSection = config_setting_get_member(configElement, "multidomaincapability");
if (configSection) {
@ -680,7 +606,7 @@ static int wtp_parsing_configuration_1_0(config_t* config) {
case CAPWAP_WIRELESS_BINDING_IEEE80211: {
/* Initialize wifi binding driver */
capwap_logging_info("Initializing wifi binding engine");
if (wifi_init_driver()) {
if (wifi_driver_init()) {
capwap_logging_fatal("Unable initialize wifi binding engine");
return 0;
}
@ -808,16 +734,27 @@ static int wtp_parsing_configuration_1_0(config_t* config) {
}
}
/* Set WLAN WTP */
if (config_lookup_string(config, "wlan.prefix", &configString) == CONFIG_TRUE) {
int length = strlen(configString);
if ((length > 0) && (length < WTP_PREFIX_NAME_MAX_LENGTH)) {
strcpy(g_wtp.wlanprefix, configString);
} else {
capwap_logging_error("Invalid configuration file, wlan.prefix string length exceeded");
return 0;
}
}
/* Set Radio WTP */
configSetting = config_lookup(config, "application.radio");
if (configSetting != NULL) {
struct wtp_radio* radio;
struct wifi_capability* capability;
int count = config_setting_length(configSetting);
if (g_wtp.binding == CAPWAP_WIRELESS_BINDING_IEEE80211) {
for (i = 0; i < count; i++) {
struct wtp_radio* radio;
if (!IS_VALID_RADIOID(g_wtp.radios->count + 1)) {
capwap_logging_error("Exceeded max number of radio device");
return 0;
@ -829,7 +766,7 @@ static int wtp_parsing_configuration_1_0(config_t* config) {
if (config_setting_lookup_string(configElement, "device", &configString) == CONFIG_TRUE) {
if (*configString && (strlen(configString) < IFNAMSIZ)) {
/* Create new radio device */
radio = wtp_create_radio();
radio = wtp_radio_create_phy();
strcpy(radio->device, configString);
if (config_setting_lookup_bool(configElement, "enabled", &configInt) == CONFIG_TRUE) {
@ -839,14 +776,15 @@ static int wtp_parsing_configuration_1_0(config_t* config) {
/* Initialize radio device */
if (config_setting_lookup_string(configElement, "driver", &configString) == CONFIG_TRUE) {
if (*configString && (strlen(configString) < WIFI_DRIVER_NAME_SIZE)) {
result = wifi_create_device(radio->radioid, radio->device, configString);
result = wifi_device_connect(radio->radioid, radio->device, configString);
if (!result) {
radio->status = WTP_RADIO_ENABLED;
capwap_logging_info("Register radioid %d with radio device: %s - %s", radio->radioid, radio->device, configString);
/* Update radio capability with device query */
capability = wifi_get_capability_device(radio->radioid);
capability = wifi_device_getcapability(radio->radioid);
if (capability) {
/* TODO */
}
} else {
radio->status = WTP_RADIO_HWFAILURE;
@ -1395,14 +1333,13 @@ int main(int argc, char** argv) {
capwap_logging_info("Terminate WTP");
/* Close radio */
wtp_radio_close();
/* Free binding */
switch (g_wtp.binding) {
case CAPWAP_WIRELESS_BINDING_IEEE80211: {
/* Free wifi binding driver */
wifi_free_driver();
capwap_logging_info("Free wifi binding engine");
break;
}
if (g_wtp.binding == CAPWAP_WIRELESS_BINDING_IEEE80211) {
capwap_logging_info("Free wifi binding engine");
wifi_driver_free();
}
}

View File

@ -79,6 +79,8 @@ struct wtp_t {
int standalone;
int running;
char wlanprefix[IFNAMSIZ];
struct wtp_state dfa;
struct capwap_network net;

View File

@ -31,42 +31,42 @@ void wtp_send_configure(struct timeout_control* timeout) {
struct wtp_radio* radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, i);
/* Set message element */
if ((radio->status == WTP_RADIO_ENABLED) && radio->radioinformation.radioid) {
if ((radio->status == WTP_RADIO_ENABLED) && (radio->radioid == radio->radioinformation.radioid)) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_WTPRADIOINFORMATION, &radio->radioinformation);
if (radio->radioinformation.radioid) {
if (radio->radioid == radio->radioinformation.radioid) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_ANTENNA, &radio->antenna);
}
if (radio->directsequencecontrol.radioid && (radio->radioinformation.radiotype & (CAPWAP_RADIO_TYPE_80211B | CAPWAP_RADIO_TYPE_80211G))) {
if ((radio->radioid == radio->directsequencecontrol.radioid) && (radio->radioinformation.radiotype & (CAPWAP_RADIO_TYPE_80211B | CAPWAP_RADIO_TYPE_80211G))) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_DIRECTSEQUENCECONTROL, &radio->directsequencecontrol);
}
if (radio->macoperation.radioid) {
if (radio->radioid == radio->macoperation.radioid) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_MACOPERATION, &radio->macoperation);
}
if (radio->multidomaincapability.radioid) {
if (radio->radioid == radio->multidomaincapability.radioid) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_MULTIDOMAINCAPABILITY, &radio->multidomaincapability);
}
if (radio->ofdmcontrol.radioid && (radio->radioinformation.radiotype & CAPWAP_RADIO_TYPE_80211A)) {
if ((radio->radioid == radio->ofdmcontrol.radioid) && (radio->radioinformation.radiotype & CAPWAP_RADIO_TYPE_80211A)) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_OFDMCONTROL, &radio->ofdmcontrol);
}
if (radio->supportedrates.radioid) {
if (radio->radioid == radio->supportedrates.radioid) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_SUPPORTEDRATES, &radio->supportedrates);
}
if (radio->txpower.radioid) {
if (radio->radioid == radio->txpower.radioid) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_TXPOWER, &radio->txpower);
}
if (radio->txpowerlevel.radioid) {
if (radio->radioid == radio->txpowerlevel.radioid) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_TXPOWERLEVEL, &radio->txpowerlevel);
}
if (radio->radioconfig.radioid) {
if (radio->radioid == radio->radioconfig.radioid) {
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_WTP_RADIO_CONF, &radio->radioconfig);
}
} else {
@ -123,15 +123,18 @@ void wtp_dfa_state_configure(struct capwap_parsed_packet* packet, struct timeout
capwap_logging_warning("Receive Configure Status Response with error: %d", (int)resultcode->code);
wtp_teardown_connection(timeout);
} else {
/* TODO: gestione richiesta */
/* */
/* Timers */
timers = (struct capwap_timers_element*)capwap_get_message_element_data(packet, CAPWAP_ELEMENT_TIMERS);
g_wtp.dfa.rfcMaxDiscoveryInterval = timers->discovery;
g_wtp.dfa.rfcEchoInterval = timers->echorequest;
/* Send change state event packet */
wtp_send_datacheck(timeout);
/* Binding values */
if (!wtp_radio_setconfiguration(packet)) {
wtp_send_datacheck(timeout); /* Send change state event packet */
} else {
capwap_logging_warning("Receive Configure Status Response with invalid elements");
wtp_teardown_connection(timeout);
}
}
}
} else {

View File

@ -122,8 +122,13 @@ void wtp_dfa_state_join(struct capwap_parsed_packet* packet, struct timeout_cont
/* DTLS data policy */
g_wtp.dtlsdatapolicy = acdescriptor->dtlspolicy & g_wtp.validdtlsdatapolicy;
/* Send configuration packet */
wtp_send_configure(timeout);
/* Binding values */
if (!wtp_radio_setconfiguration(packet)) {
wtp_send_configure(timeout); /* Send configuration packet */
} else {
capwap_logging_warning("Receive Join Response with invalid elements");
wtp_teardown_connection(timeout);
}
} else {
capwap_logging_warning("Receive Join Response with invalid DTLS data policy");
wtp_teardown_connection(timeout);

View File

@ -8,7 +8,7 @@ void wtp_create_radioopsstate_element(struct capwap_packet_txmng* txmngpacket) {
struct wtp_radio* radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, i);
struct capwap_radiooprstate_element radiooprstate;
radiooprstate.radioid = (unsigned char)(i + 1);
radiooprstate.radioid = radio->radioid;
radiooprstate.state = ((radio->status == WTP_RADIO_ENABLED) ? CAPWAP_RADIO_OPERATIONAL_STATE_ENABLED : CAPWAP_RADIO_OPERATIONAL_STATE_DISABLED);
if (radio->status == WTP_RADIO_ENABLED) {
@ -36,7 +36,7 @@ void wtp_create_radioadmstate_element(struct capwap_packet_txmng* txmngpacket) {
struct wtp_radio* radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, i);
struct capwap_radioadmstate_element radioadmstate;
radioadmstate.radioid = (unsigned char)(i + 1);
radioadmstate.radioid = radio->radioid;
radioadmstate.state = ((radio->status == WTP_RADIO_DISABLED) ? CAPWAP_RADIO_ADMIN_STATE_DISABLED : CAPWAP_RADIO_ADMIN_STATE_ENABLED);
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_RADIOADMSTATE, &radioadmstate);
}
@ -56,7 +56,7 @@ void wtp_create_80211_wtpradioinformation_element(struct capwap_packet_txmng* tx
memcpy(&element, &radio->radioinformation, sizeof(struct capwap_80211_wtpradioinformation_element));
} else {
memset(&element, 0, sizeof(struct capwap_80211_wtpradioinformation_element));
element.radioid = (uint8_t)radio->radioid;
element.radioid = radio->radioid;
}
capwap_packet_txmng_add_message_element(txmngpacket, CAPWAP_ELEMENT_80211_WTPRADIOINFORMATION, &element);

View File

@ -1,8 +1,436 @@
#include "wtp.h"
#include "wtp_radio.h"
/* */
static int wtp_radio_configure_phy(struct wtp_radio* radio) {
/* Default rate set is all supported rate */
if (radio->radioid != radio->rateset.radioid) {
if (radio->radioid != radio->supportedrates.radioid) {
return -1; /* Supported rate not set */
}
/* */
radio->rateset.radioid = radio->radioid;
radio->rateset.ratesetcount = radio->supportedrates.supportedratescount;
memcpy(radio->rateset.rateset, radio->supportedrates.supportedrates, CAPWAP_RATESET_MAXLENGTH);
}
/* Check channel radio */
if (radio->radioid != radio->radioinformation.radioid) {
return -1;
} else if (radio->radioid != radio->radioconfig.radioid) {
return -1;
} else if ((!radio->directsequencecontrol.radioid && !radio->ofdmcontrol.radioid) || ((radio->directsequencecontrol.radioid == radio->radioid) && (radio->ofdmcontrol.radioid == radio->radioid))) {
return -1; /* Only one from DSSS and OFDM can select */
} else if ((radio->radioid == radio->directsequencecontrol.radioid) && !(radio->radioinformation.radiotype & (CAPWAP_RADIO_TYPE_80211B | CAPWAP_RADIO_TYPE_80211G))) {
return -1;
} else if ((radio->radioid == radio->ofdmcontrol.radioid) && !(radio->radioinformation.radiotype & CAPWAP_RADIO_TYPE_80211A)) {
return -1;
}
return 0;
}
/* */
static void wtp_radio_destroy_wlan(struct wtp_radio_wlan* wlan) {
if (wlan->wlanid && wlan->radio) {
if (wlan->state != WTP_RADIO_WLAN_STATE_IDLE) {
if (wlan->state == WTP_RADIO_WLAN_STATE_AP) {
wifi_wlan_stopap(wlan->radio->radioid, wlan->wlanid);
}
/* Destroy interface */
wifi_wlan_destroy(wlan->radio->radioid, wlan->wlanid);
}
}
/* Release item */
memset(wlan, 0, sizeof(struct wtp_radio_wlan));
}
/* */
void wtp_radio_init(void) {
g_wtp.radios = capwap_array_create(sizeof(struct wtp_radio), 0, 1);
}
/* */
void wtp_radio_close(void) {
int i, j;
ASSERT(g_wtp.radios != NULL);
for (i = 0; i < g_wtp.radios->count; i++) {
struct wtp_radio* radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, i);
if (radio->antenna.selections) {
capwap_array_free(radio->antenna.selections);
}
if (radio->wlan) {
for (j = 0; j < radio->wlan->count; j++) {
wtp_radio_destroy_wlan((struct wtp_radio_wlan*)capwap_array_get_item_pointer(radio->wlan, j));
}
capwap_array_free(radio->wlan);
}
}
capwap_array_resize(g_wtp.radios, 0);
}
/* */
void wtp_radio_free(void) {
ASSERT(g_wtp.radios != NULL);
ASSERT(g_wtp.radios->count == 0);
capwap_array_free(g_wtp.radios);
}
/* */
int wtp_radio_setconfiguration(struct capwap_parsed_packet* packet) {
int i;
unsigned short binding;
struct wtp_radio* radio;
struct capwap_array* messageelements;
ASSERT(packet != NULL);
/* */
binding = GET_WBID_HEADER(packet->rxmngpacket->header);
if (binding == CAPWAP_WIRELESS_BINDING_IEEE80211) {
struct capwap_list_item* search = packet->messages->first;
while (search) {
struct capwap_message_element_itemlist* messageelement = (struct capwap_message_element_itemlist*)search->item;
/* Parsing only IEEE 802.11 message element */
if (IS_80211_MESSAGE_ELEMENTS(messageelement->type)) {
switch (messageelement->type) {
case CAPWAP_ELEMENT_80211_ANTENNA: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_antenna_element* antenna;
for (i = 0; i < messageelements->count; i++) {
antenna = *(struct capwap_80211_antenna_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(antenna->radioid);
if (radio && (radio->radioid == antenna->radioid)) {
capwap_element_80211_antenna_copy(&radio->antenna, antenna);
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_MACOPERATION: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_macoperation_element* macoperation;
for (i = 0; i < messageelements->count; i++) {
macoperation = *(struct capwap_80211_macoperation_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(macoperation->radioid);
if (radio && (radio->radioid == macoperation->radioid)) {
memcpy(&radio->macoperation, macoperation, sizeof(struct capwap_80211_macoperation_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_MULTIDOMAINCAPABILITY: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_multidomaincapability_element* multidomaincapability;
for (i = 0; i < messageelements->count; i++) {
multidomaincapability = *(struct capwap_80211_multidomaincapability_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(multidomaincapability->radioid);
if (radio && (radio->radioid == multidomaincapability->radioid)) {
memcpy(&radio->multidomaincapability, multidomaincapability, sizeof(struct capwap_80211_multidomaincapability_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_DIRECTSEQUENCECONTROL: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_directsequencecontrol_element* directsequencecontrol;
for (i = 0; i < messageelements->count; i++) {
directsequencecontrol = *(struct capwap_80211_directsequencecontrol_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(directsequencecontrol->radioid);
if (radio && (radio->radioid == directsequencecontrol->radioid)) {
memcpy(&radio->directsequencecontrol, directsequencecontrol, sizeof(struct capwap_80211_directsequencecontrol_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_OFDMCONTROL: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_ofdmcontrol_element* ofdmcontrol;
for (i = 0; i < messageelements->count; i++) {
ofdmcontrol = *(struct capwap_80211_ofdmcontrol_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(ofdmcontrol->radioid);
if (radio && (radio->radioid == ofdmcontrol->radioid)) {
memcpy(&radio->ofdmcontrol, ofdmcontrol, sizeof(struct capwap_80211_ofdmcontrol_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_RATESET: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_rateset_element* rateset;
for (i = 0; i < messageelements->count; i++) {
rateset = *(struct capwap_80211_rateset_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(rateset->radioid);
if (radio && (radio->radioid == rateset->radioid)) {
memcpy(&radio->rateset, rateset, sizeof(struct capwap_80211_rateset_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_SUPPORTEDRATES: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_supportedrates_element* supportedrates;
for (i = 0; i < messageelements->count; i++) {
supportedrates = *(struct capwap_80211_supportedrates_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(supportedrates->radioid);
if (radio && (radio->radioid == supportedrates->radioid)) {
memcpy(&radio->supportedrates, supportedrates, sizeof(struct capwap_80211_supportedrates_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_TXPOWER: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_txpower_element* txpower;
for (i = 0; i < messageelements->count; i++) {
txpower = *(struct capwap_80211_txpower_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(txpower->radioid);
if (radio && (radio->radioid == txpower->radioid)) {
memcpy(&radio->txpower, txpower, sizeof(struct capwap_80211_txpower_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_WTP_QOS: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_wtpqos_element* qos;
for (i = 0; i < messageelements->count; i++) {
qos = *(struct capwap_80211_wtpqos_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(qos->radioid);
if (radio && (radio->radioid == qos->radioid)) {
memcpy(&radio->qos, qos, sizeof(struct capwap_80211_wtpqos_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_WTPRADIOINFORMATION: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_wtpradioinformation_element* radioinformation;
for (i = 0; i < messageelements->count; i++) {
radioinformation = *(struct capwap_80211_wtpradioinformation_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(radioinformation->radioid);
if (radio && (radio->radioid == radioinformation->radioid)) {
memcpy(&radio->radioinformation, radioinformation, sizeof(struct capwap_80211_wtpradioinformation_element));
}
}
}
break;
}
case CAPWAP_ELEMENT_80211_WTP_RADIO_CONF: {
messageelements = (struct capwap_array*)messageelement->data;
if (messageelements && (messageelements->count > 0)) {
struct capwap_80211_wtpradioconf_element* radioconfig;
for (i = 0; i < messageelements->count; i++) {
radioconfig = *(struct capwap_80211_wtpradioconf_element**)capwap_array_get_item_pointer(messageelements, i);
radio = wtp_radio_get_phy(radioconfig->radioid);
if (radio && (radio->radioid == radioconfig->radioid)) {
memcpy(&radio->radioconfig, radioconfig, sizeof(struct capwap_80211_wtpradioconf_element));
}
}
}
break;
}
}
}
/* Next */
search = search->next;
}
}
return 0;
}
/* */
struct wtp_radio* wtp_radio_create_phy(void) {
struct wtp_radio* radio;
/* Create disabled radio */
radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, g_wtp.radios->count);
radio->radioid = (uint8_t)g_wtp.radios->count;
radio->status = WTP_RADIO_DISABLED;
/* Init configuration radio */
radio->wlan = capwap_array_create(sizeof(struct wtp_radio_wlan), 0, 1);
radio->antenna.selections = capwap_array_create(sizeof(uint8_t), 0, 1);
return radio;
}
/* */
struct wtp_radio* wtp_radio_get_phy(uint8_t radioid) {
int i;
ASSERT(IS_VALID_RADIOID(radioid));
for (i = 0; i < g_wtp.radios->count; i++) {
struct wtp_radio* radio = (struct wtp_radio*)capwap_array_get_item_pointer(g_wtp.radios, i);
if (radioid == radio->radioid) {
return radio;
}
}
return NULL;
}
/* */
struct wtp_radio_wlan* wtp_radio_get_wlan(struct wtp_radio* radio, uint8_t wlanid) {
int i;
ASSERT(IS_VALID_WLANID(wlanid));
for (i = 0; i < radio->wlan->count; i++) {
struct wtp_radio_wlan* wlan = (struct wtp_radio_wlan*)capwap_array_get_item_pointer(radio->wlan, i);
if ((wlanid == wlan->wlanid) && (radio == wlan->radio)) {
return wlan;
}
}
return NULL;
}
/* */
uint32_t wtp_radio_create_wlan(struct capwap_parsed_packet* packet, struct capwap_80211_assignbssid_element* bssid) {
uint32_t band;
uint8_t channel;
struct wtp_radio* radio;
struct wtp_radio_wlan* wlan;
struct capwap_80211_addwlan_element* addwlan;
struct capwap_array* ies;
/* Get message elements */
addwlan = (struct capwap_80211_addwlan_element*)capwap_get_message_element_data(packet, CAPWAP_ELEMENT_80211_ADD_WLAN);
ies = (struct capwap_array*)capwap_get_message_element_data(packet, CAPWAP_ELEMENT_80211_IE);
if (!addwlan) {
return CAPWAP_RESULTCODE_FAILURE;
}
/* Get physical radio */
radio = wtp_radio_get_phy(addwlan->radioid);
if (!radio) {
return CAPWAP_RESULTCODE_FAILURE;
}
/* Check if virtual interface is already exist */
wlan = wtp_radio_get_wlan(radio, addwlan->wlanid);
if (wlan) {
return CAPWAP_RESULTCODE_FAILURE;
}
/* Prepare physical interface for create wlan */
if (!radio->wlan->count) {
if (wtp_radio_configure_phy(radio)) {
return CAPWAP_RESULTCODE_FAILURE;
}
}
/* Set radio channel */
band = ((radio->radioid == radio->directsequencecontrol.radioid) ? WIFI_BAND_2GHZ : WIFI_BAND_5GHZ);
channel = ((radio->radioid == radio->directsequencecontrol.radioid) ? radio->directsequencecontrol.currentchannel : radio->ofdmcontrol.currentchannel);
if (wifi_device_setfrequency(addwlan->radioid, band, radio->radioinformation.radiotype, channel)) {
return CAPWAP_RESULTCODE_FAILURE;
}
/* Set virtual interface information */
wlan = (struct wtp_radio_wlan*)capwap_array_get_item_pointer(radio->wlan, radio->wlan->count);
wlan->radio = radio;
wlan->wlanid = addwlan->wlanid;
sprintf(wlan->wlanname, "%s%02d.%02d", g_wtp.wlanprefix, (int)addwlan->radioid, (int)addwlan->wlanid);
if (wifi_iface_index(wlan->wlanname)) {
memset(wlan, 0, sizeof(struct wtp_radio_wlan));
return CAPWAP_RESULTCODE_FAILURE;
}
/* Create virtual interface */
if (!wifi_wlan_create(addwlan->radioid, addwlan->wlanid, wlan->wlanname, NULL)) {
wlan->state = WTP_RADIO_WLAN_STATE_CREATED;
} else {
wtp_radio_destroy_wlan(wlan);
return CAPWAP_RESULTCODE_FAILURE;
}
/* Configure virtual interface */
if (!wifi_wlan_setupap(addwlan, ies)) {
wlan->state = WTP_RADIO_WLAN_STATE_READY;
} else {
wtp_radio_destroy_wlan(wlan);
return CAPWAP_RESULTCODE_FAILURE;
}
/* Start AP */
if (!wifi_wlan_startap(addwlan->radioid, addwlan->wlanid)) {
wlan->state = WTP_RADIO_WLAN_STATE_AP;
} else {
wtp_radio_destroy_wlan(wlan);
return CAPWAP_RESULTCODE_FAILURE;
}
/* */
bssid->radioid = addwlan->radioid;
bssid->wlanid = addwlan->wlanid;
wifi_wlan_getbssid(addwlan->radioid, addwlan->wlanid, bssid->bssid);
return CAPWAP_RESULTCODE_SUCCESS;
}

View File

@ -1,28 +1,65 @@
#ifndef __WTP_RADIO_HEADER__
#define __WTP_RADIO_HEADER__
/* */
#define WTP_RADIO_ENABLED 0
#define WTP_RADIO_DISABLED 1
#define WTP_RADIO_HWFAILURE 2
#define WTP_RADIO_SWFAILURE 3
/* */
#define WTP_PREFIX_NAME_MAX_LENGTH (IFNAMSIZ - 6)
#define WTP_PREFIX_DEFAULT_NAME "ap"
#define WTP_RADIO_WLAN_STATE_IDLE 0
#define WTP_RADIO_WLAN_STATE_CREATED 1
#define WTP_RADIO_WLAN_STATE_READY 2
#define WTP_RADIO_WLAN_STATE_AP 3
struct wtp_radio_wlan {
struct wtp_radio* radio;
uint8_t wlanid;
char wlanname[IFNAMSIZ];
int state;
};
/* */
struct wtp_radio {
int radioid;
uint8_t radioid;
char device[IFNAMSIZ];
struct capwap_array* wlan;
int status;
struct capwap_80211_antenna_element antenna;
struct capwap_80211_directsequencecontrol_element directsequencecontrol;
struct capwap_80211_macoperation_element macoperation;
struct capwap_80211_multidomaincapability_element multidomaincapability;
struct capwap_80211_ofdmcontrol_element ofdmcontrol;
struct capwap_80211_rateset_element rateset;
struct capwap_80211_supportedrates_element supportedrates;
struct capwap_80211_txpower_element txpower;
struct capwap_80211_txpowerlevel_element txpowerlevel;
struct capwap_80211_wtpradioconf_element radioconfig;
struct capwap_80211_wtpradioinformation_element radioinformation;
struct capwap_80211_wtpqos_element qos;
};
/* */
void wtp_radio_init(void);
void wtp_radio_close(void);
void wtp_radio_free(void);
/* */
struct wtp_radio* wtp_radio_create_phy(void);
struct wtp_radio* wtp_radio_get_phy(uint8_t radioid);
struct wtp_radio_wlan* wtp_radio_get_wlan(struct wtp_radio* radio, uint8_t wlanid);
/* */
int wtp_radio_setconfiguration(struct capwap_parsed_packet* packet);
/* */
uint32_t wtp_radio_create_wlan(struct capwap_parsed_packet* packet, struct capwap_80211_assignbssid_element* bssid);
uint32_t wtp_radio_update_wlan(struct capwap_parsed_packet* packet);